
Efficient Parallel Verification of Natural Deduction Proof Graphs
James Oswald • Brandon Rozek

Rensselaer AI and Reasoning (RAIR) Laboratory
Rensselaer Polytechnic Institute

Introduction and Objectives

We present a set of parallel algorithms for the formal verification of graph
based natural deduction style proofs. We compare our approach with a
single-threaded implementation on the AIMOS super computer and perform
an ablation study with respect to possible optimizations and various proof
topologies. We conclude parallization leads to an order of magnitude increase
in verification performance on particular topologies of proofs.

Natural Deduction, Inference Rules, Proof Graphs

Natural Deduction is a logic calculi independently proposed in
(Gentzen 1935, Jaśkowski 1934) in an effort to emulate human-level
reasoning through assumptions and chains of inference. The rules of natural
deduction associate each formula with a set of assumptions from which they
are derived (Γ,Σ in the tables). The rules specify the syntactic and semantic
conditions for the preceding formualae/assumptions and dictate when applied
how the resulting formulae and assumptions are transformed.

Figure: Table 1: (Some) Introduction Rules

Rule Name Condition(s) Result

Conjunctive Introduction p (Γ), q (Σ) p ∧ q (Γ ∪ Σ)
Disjunctive Introduction p (Γ) p ∨ q (Γ)
Conditional Introduction q ⊢ p (q ∪ Γ) p → q (Γ)
Negation Introduction p (q ∪ Γ),¬p (Σ) ¬q (Γ ∪ Σ)

Figure: Table: (Some) Elimination Rules

Rule Name Condition(s) Result

Conjunctive Elimination p ∧ q (Γ) p (Γ), q (Γ)
Conditional Elimination p → q(Γ), p (Σ) q (Γ ∪ Σ)
Negation Elimination p (¬q ∪ Γ),¬p (Σ) q (Γ ∪ Σ)

These proofs can be represented as directed acyclic hypergraphs in which a
labeled edge representing a rule connects the condition formulae to the result
formulae. (Bringsjord, Govindarajulu, Taylor & Bringsjord 2022)

Figure: Three basic natural deduction proof graphs. From left to right Modus Ponens (if
elim), ¬(p ∨ q) ⊢ ¬q, and ⊢ p → (p ∨ q)

Layering and Serial Solution

Figure: A proof that
¬A,A ∨ B ⊢ B with the
layers colored

We define layering for proof graphs, which
provides a notion for effectively determining
verification dependencies. As seen in Tables
1 and 2, rules depend on sets of assumptions
from parent nodes in the previous layers. The
layer of a node n in a proof graph is the maximum
distance from an assumption to n, formally

L(n) =

0, (if assumption)

1 + max
m∈P(n)

L(m), (otherwise)

Where P is a function mapping a node n to the
set of its parents (its incoming edges). For a
non-parallel (serial) algorithm, we can begin by
computing the layers for all nodes. Once the layers
are known, the layers can be iterated over and each
node in a layer can be verified according to the
rule on its incoming edge.

Parallel Algorithm and Load Balancing

Layer Nodes

0 2,4,7,16,
23,20,24,18

1 5,6,8,9,15,
14,21,25,17

2 3,11,10, 22
3 12,19
4 1, 13
5 0

Figure: (Left) A proof of
logical or (∨) distributivity
over logical and (∧).
(Top) The nodes the left
proof grouped by layer.

Non-optimized parallelization: Assuming w parallel ranks (threads), on
each layer the nodes are divided equally among the ranks and verified in
parallel. For example if w = 2, the 8 nodes on layer 0 will be evenly split
between the two ranks for verification. Then the 9 nodes on layer 1 will have
4 go to one rank and 5 the other. This process can become inefficient on
layers like 3,4,5 under large w as ranks are waiting with nothing to do.

Load Balancing: Syntactic checks are independent of assumption updates
on each layer, allowing unused ranks to to skip ahead and syntactically verify
the next layer. For example on layer 1 if w = 2, the rank that was assigned
to verify 4 rather than 5 nodes will additionally perform a syntax check on the
first node on layer 2 to balance the workload.

Experiments and Results

We experiment with 5 algorithms: serial verification (Serial), and four variants
of parallel verification based on their use of parallel (mpi) or serial (os) layer
computation and non-optimized (no) or load balanced (lb) verification
algorithm. We showcase only on proof topologies in which parallelization
offers benefit, serial will always beat parallel on straight proof topologies.

Figure: (Left) The parallel branches proof topology parameterized by the height of each
branch h and number of branches n. (Right) Timing results on a parallel branches topology
(where branches are ”or intro” and joins are ”and intro”) for h = 100 and variable n on the
x axis.

Figure: (Left) The tree proof topology parameterized by the height of the tree h. (Right)
Timing results on a tree topology (where joins are ”and intro”) for a variable tree height, h
on the x axis.

On these topologies the parallel algorithms outperforms serial verification as
the problem gets larger. Load balancing performs well on the branch topology
and that all parallel methods are performant on the tree topology.

Future Work

Other frameworks such as the vampire theorem prover (Riazanov &
Voronkov 2002) output proof graphs with more rules, our work could be
extended to work with these. Additionally, null models for proof graphs that
capture the range of natural deduction proofs would provide a more realistic
performance evaluation with respect to our algorithms.

References
Bringsjord, S., Govindarajulu, N. S., Taylor, J. & Bringsjord, A. (2022), Logic: A Modern Approach.

Gentzen, G. (1935), ‘Untersuchungen über das logische schließen. i’, Mathematische Zeitschrift pp. 176–210.

Jaśkowski, S. (1934), ‘On the rules of suppositions in formal logic’.

Riazanov, A. & Voronkov, A. (2002), ‘The design and implementation of vampire’, AI Commun. p. 91â110.


