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Initial Work

These result are preliminary work from a project looking at
formal analysis in synthesized crypotosystems.
Idea:
• Want to generate secure cryptosystems automatically.
• Generally, cryptosystems are first generated, and then

symbolic techniques are applied.
• Symbolic techniques used to identify secure cryptosystems

and/or weed out insecure ones.
Goal:
• Create a tool which can generate and verify

cryptosystems.
• There will be restrictions of course.
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Overview

• We analyze the synthesized cryptographic algorithms via a
type of protocol modeling the interaction between an
adversary and an encryptor/oracle.

• We denote these protocols as Cryptographic Modes of
Operation programs or MOO-programs.

Security question: whether adversary can force the
cryptosystem to produce cipher blocks that are equal modulo
some theory.
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Theory

In this paper we will primarily be concerned with the equational
theory of xor:
• Exor = R⊕ ∪ E⊕,
• R⊕ = {x ⊕ x → 0, x ⊕ 0 → x},
• E⊕ = AC(⊕).

Σ⊕ = {⊕, f, 0}.
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MOO Programs

MOO-Program: An interaction between the adversary and the
oracle in which the adversary sends blocks of plaintext to be
encrypted and the oracle sends back blocks of ciphertext
according to some fixed schedule defined by the mode of
operation.
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MOO Programs

The blocks sent between the adversary and the oracle are
modeled by terms:
• MOO⊕-terms are terms built up using the signature
Σ = {⊕, 0, f}.

A MOO-Program will be modeled by a list of MOO⊕-terms of
the form [t1, t2, . . . , tn].
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An Example: CBC

One such example is Cipher Block Chaining (CBC) :
• The ith plain text is a ground MOO⊕-term xi.
• The ith block of cipher text, Ci, is modeled by the term

f(Ci−1 ⊕ xi), where xi is the ith plaintext.
The initial cipher block, the IV, is modeled by a bound variable.
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An Example: CBC

MOO-Program models the CBC mode of encryption:

[IV, x1, f(IV ⊕ x1), x2, f(x2 ⊕ f(IV ⊕ x1))].
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Detecting Possible Collisions

• We are interested in whether the problem will turn
undecidable if we release the boundedness condition on
either the number of sessions or their lengths.

• Finding whether adversary can force the cryptosystem to
produce cipher blocks that are equal is decidable, when
the number of sessions and their lengths are bounded.
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Unbounded Session Lengths

Let us look at the non-deterministic version of the decision
problem for MOO-programs of unbounded session lengths and
bounded number of sessions is undecidable.
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Encoding

We will use the following method for constructing cipher
blocks. The construction encodes possible solutions to the Post
Correspondence Problem (PCP):
• Let PCP = (α0

β0
), (α1

β1
), . . . , (αn

βn
).

• Let Ci be the ith output of the cryptosystem.
The oracle will encode blocks as follows: For i > 0 let Ci = Ei0
or, Ei2 , or . . ., or Ein where,
• Eij = [f(ri ⊕ Ci,1), f(ri ⊕ Ci,2)], 0 ≤ j ≤ n,
• Ci,1 = F(αj

⊕
Ci−1,1), Ci,2 = F(βj

⊕
Ci−1,2),

• C0,1 = F(αj
⊕

0), C0,2 = F(βj
⊕

0).
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Reduction

Here is how the program works:
• The adversary non-deterministically picks a possible

solution to the PCP, i0, i1, i2, . . . , ik.
• Each turn the adversary sends an index in the solution,

starting with ik and proceeding each turn until i0 is
reached.

• At each step the oracle encodes a pair of cipher blocks Ej
and returns them to the adversary.

• After receiving each Ej, the adversary attempts to check if
any two cipher blocks are equal.

The program stops if the adversary finds two equal pairs or the
adversary stops the program.
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Theorem

Assume M is an arbitrary non-deterministic MOO-program.
The problem of determining if M, executing with a bounded
number of sessions and unbounded session lengths, ever
produces two equal cipher blocks is undecidable.
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Example

Consider the following PCP:

block 1︷ ︸︸ ︷(
ba
baa

)
,

block 2︷ ︸︸ ︷(
ab
ba

)
,

block 3︷ ︸︸ ︷(
aaa
aa

)
A solution to this problem is 1, 3.

14 / 1



Synthesized
Cryptosystems

Marshall et al.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example

Let’s trace a run of the program where the adversary guesses
the solution 1, 3.
-In the first step the adversary sends 3 to the oracle and
receives the following cipher block in return. C0 = E03 where

E03 = [f(r0 ⊕ C0,1), f(r0 ⊕ C0,2)]

C0,1 = F(α3
⊕

C0,1) = f(a ⊕ f(a ⊕ f(a ⊕ 0)))

C0,2 = F(β3
⊕

C0,2) = f(a ⊕ f(a ⊕ 0))
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Example

At the second step the adversary sends a 1 to the oracle and
receives the following in return. C1 = E11 where

E11 = [f(r1 ⊕ C1,1), f(r1,C1,2)]

C1,1 = F(α1
⊕

C0,1) = f(b ⊕ f(a ⊕ C0,1))

C1,2 = F(β1
⊕

C0,2) = f(b ⊕ f(a ⊕ f(a ⊕ C0,2)))

Notice that now after step 2 the adversary has two cipher
blocks, C1,1 and C1,2, which are equal.

C1,1 = f(b ⊕ f(a ⊕ f(a ⊕ f(a ⊕ f(a ⊕ 0)))))
C1,2 = f(b ⊕ f(a ⊕ f(a ⊕ f(a ⊕ f(a ⊕ 0)))))
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Other Cases?

Other undecidability results using similar reduction:
• deterministic unbounded session length,
• both the deterministic and non-deterministic form of

unbounded number of sessions with bounded session
length.
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Invertibility

• A natural requirement of any cryptographic algorithm is
that it be invertible.

• In the case of modes of encryption that leads to a
question:

• given a set S of MOO terms with subterms designated as
plain text, can we tell if S is invertible?
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Preliminaries

A few preliminaries:
• The set C = {C0,C1, . . . ,Cn} represents the cipher blocks,

Ci, produced by the oracle in the MOO-program.
• Let P = {p0, p1, . . . , pn} be the set representing the

plaintext messages, which are constants, sent by the
adversary, during a run of the MOO-program, where pi is a
subterm of Ci.
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Invertibility Relation

• We can first define an invertibility relation, ϕ ⊢E p, s.t.
p ∈ P.

• This relation can be axiomatized by a set of inference rules
which introduce a new symbol, f−1.

• f = enc(_,K) and f−1 = dec(_,K), s.t. f−1(f(p)) = p
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Invertibility Relation

In this case the set of rules axiomatizing the invertibility
problem are exactly those axiomatizing the deduction
problem [?, ?].

While the deduction problem is undecidable in general it is
decidable for some theories. Although the deduction problem is
more general than the invertibility problem it does allows us to
obtain a general decidability result for the theory of interest.

21 / 1



Synthesized
Cryptosystems

Marshall et al.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General Invertibility

• We limit our investigation to signature Σ = {⊕, 0, f, f−1}
and MOO-programs over this signature.

• The equational theories can be presented as a
combination.
R⊕ = {x ⊕ x → 0, x ⊕ 0 → x},
Rf = {f(f−1(x)) → x, f−1(f(x)) → x}, E⊕ = AC(⊕).

• We are interested in the invertibility problem for the theory
E−1 = Rf ∪ R⊕ ∪ E⊕.
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General Invertibility

We can consider the combination problem for the theory
Rf ∪ {R⊕ ∪ E⊕}. Notice that this is a disjoint combination
since {f, f−1} ∩ {0,⊕} = ∅. Therefore from the disjoint
combination result of [?] we get the following:

• The deduction problem is decidable in the theory
Rf ∪ {R⊕ ∪ E⊕}.

As a corollary we get:
• The invertibility problem for the theory Rf ∪ {R⊕ ∪ E⊕} is

decidable.
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More Efficient Algorithm
• Let C = {Co,C1, . . . ,Cm} be the set of cipher-blocks from

a MOO-program.
• Let N denote any initial nonces, random strings, known by

the adversary.
• The set of initial knowledge is K = C ∪ N. Let

S = max{|t|, s.t. t ∈ C}.
• The set of saturated knowledge, K∗, is computed as

follows:
1 Initially K∗ = K.
2 Three closure operations are applied until there is no

change to the set K∗:
1 If t ∈ K∗, t(ϵ) = f, f−1(t) → t′, then K∗ = K∗ ∪ {t′}.
2 If t1, t2 ∈ K∗, t1 ⊕ t2 = t′, and |t′| ≤ S then

K∗ = K∗ ∪ {t′}.
3 If t ∈ K∗, and |f(t)| ≤ S then K∗ = K∗ ∪ {f(t)}.
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Algorithm 1 Invertibility for MOO⊕ terms

Require: Set K, a plain-text goal p, and a set Kp ⊆ K of terms
containing p as a subterm.
if Kp = ∅ then

Exit with Failure.
else

Compute K∗

end if
if p ∈ K∗ ∨ ∃t ∈ K∗ s.t. t =Rf∪R⊕∪E⊕ p then

Return success.
else

Exit with Failure
end if
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Result

Theorem 3.1
Algorithm ?? is terminating, sound, and complete for the
theory Rf ∪ {R⊕ ∪ E⊕}.
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Example

• Let C0 = p0 ⊕ f(IV), C1 = p1 ⊕ f(p0)⊕ f(IV),
C3 = p2 ⊕ f(p1)⊕ f(p2).

• If IV is known, IV ∈ N, then f(IV) ∈ K∗ and from C0 we
obtain, p0.

• Once we have p0, f(p0) ∈ K∗ and from C1 we get p1.
Likewise, we can also obtain p2. Thus we have invertibility.
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Future Work

Future work includes:
• considering the invertibility problem for MOO program,
• identifying decidable cases of the decision problem,
• and implementing the decidable cases into a new tool for

the automatic synthesis and security verification of certain
cryptosystems.
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Questions?

Thank you!
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