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High Level Framework

We are presenting a preliminary version of a tool that
automatically synthesizes and verifies cryptographic algorithms.

Outline:

• Map the security property from the classical
computational definition to a symbolic security
equivalent. [Meadows, 2021]

• Apply symbolic techniques such as term rewriting and
unification to verify cryptographic algorithms.

• Automatically synthesize cryptosystems that satisfy the
security property.
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Cryptographic Mode of Operation

• At this point, the tool supports the verification of symbolic
security and invertibility of recursively defined modes of
operation with an xor-operation and encryption function.

• A cryptographic mode of operation takes a message of
arbitrary size and uses a block cipher to encrypt a fixed
size parts of a message.
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Core Security Question

• We considered the computational security property
IND$-CPA.

• That is, ciphertext indistinguishability from random under
chosen plaintext attack.

• An adversary carefully selects plaintexts to send to an
oracle in hopes of breaking symbolic security. An oracle
returns the ciphertext according to a mode of operation.

Can an adversary force the cryptosystem to produce an
equivalent sequence of ciphertexts modulo some equational
theory? If so, we call the cryptosystem symbolically insecure.
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Symbolic History

• Interactions between an adversary and an oracle in a
cryptosystem can be modeled by a symbolic history.
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Symbolic Problem

• The adversary then takes the symbolic history, and tries to
find a computable substitution1 for their plaintexts to
make some sequence of ciphertexts equivalent.

Symbolic History: [IV , p1, f (p1 ⊕ IV ), p2, f (p2 ⊕ f (p1 ⊕ IV ))]

Unification Problem: f (p1 ⊕ IV ) =E? f (p2 ⊕ f (p1 ⊕ IV ))

p1 =?? p2 =??

1More on constraints of computable substitutions later. Example:
adversary cannot compute f .
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Related Work

Tools closely related to ours include:

• ZooCrypt: Analyzes chosen plaintext and chosen
cipher-text security public-key encryption schemes built
from trapdoor permutations and hash functions.

• Linisynth: Generates and verifies multi-party computation
schemes using free-xor compatible garbled circuits.

The goal of CryptoSolve, however, is to serve as a tool for
designing and experimenting with multiple types of
cryptosystems, security properties, and algorithms.

7 / 26



CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Tool Overview

Below is a categorized representation of the current capabilities
of our tool.

CryptoSolve

Symbolic Library
MOO Program

Generation

Symbolic Se-
curity Check

Invertibility
Checking

Term Library

Term Rewrite
Library

Unification

Custom MOO
Definition

Custom Sched-
ule Definition
Automated
MOO Con-
struction

Quick Syntac-
tic Checks

Collision Check

Cipher Block
Invertibility

MOO-Program
Invertibility
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Symbolic Library: Terms

f = Function("f", arity=1)

xor = Function("xor", arity=2)

IV = Constant("IV")

p1 = Variable("p1")

# Construct CBC term

c1 = f(xor(p1, IV))

# Helpful Methods

p1 in c1 # True

depth(c1) # 2

9 / 26



CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Substitutions

p2 = Variable("p2")

c2 = f(xor(c1, p2))

sigma1 = SubstituteTerm()

sigma1.add(p1, Constant("0"))

sigma2 = SubstituteTerm()

sigma2.add(p2, Constant("0"))

# Compose Substitions

sigma = sigma1 * sigma2

# Apply Substitution

c2 * sigma # f(xor(f(xor(0, IV)), 0))
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Rewriting

x = Variable("x")

example_term = xor(xor(p1, p1), xor(p1, p1))

# Rule: xor(x, x) -> 0

xor_rule = RewriteRule(xor(x, x), Constant("0"))

# Application of a rule

xor_rule.apply(example_term)

# {’’: 0, ’1’: xor(0, xor(p1, p1)), ’2’:

xor(xor(p1, p1), 0)}

Algorithms for finding variants and performing narrowing are
also included.
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Unification

• In our library, unification returns a set of substitutions
which each represent a most general unifier.
• {} means no unifiers were found.
• {SubstituteTerm()} is the identity unifier.

y = Variable("y")

a, b = Constant("a"), Constant("b")

# Syntactic Unification

unif({Equation(xor(x, y), xor(a, b))})

# {{ x -> a, y -> b }}
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MOO⊕ Terms

We currently support analyzing modes of operations that are
consisted of MOO⊕ terms.

• These terms are defined over the signature
{⊕/2, 0/0, f /1} with the xor equational theory and f as a
free function symbol.

• The xor equational theory can be represented as a
combination of the Associative-Commutative (AC)
equational theory and the rewrite system
{x ⊕ x → 0, x ⊕ 0→ x}.
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Computable Substitutions

Recall that the adversary wishes to find a computable
substitution for their plaintexts to make some sequence of
ciphertexts equivalent.

• A substitution σ is computable w.r.t a symbolic history if
σ maps each variable to a term built up using the
operators 0 and ⊕ on terms returned by the oracle earlier
than x in P.

Note that the adversary cannot compute the f block cipher
and must instead rely on ciphertexts received from the oracle.
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Example

Consider the following symbolic history:
[IV , p1, f (p1 ⊕ IV ), p2, f (p2 ⊕ f (p1 ⊕ IV ))]

p1 Computable Substitution Components: 0, IV

p2 Computable Substitution Components: 0, IV , p1, f (p1,⊕IV )
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Unification and MOO Analysis

Currently we have two different unification algorithms for
MOO⊕ terms which ensure the computable substitution
constraint.

• f -rooted local unification

• ⊕-rooted local unification [Lin and Lynch, 2020]
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Security Library: MOO Program

We currently support several well-known cryptosystems and
allow for users to define their own.

@MOO.register("cipher_block_chaining")

def cipher_block_chaining(iteration, nonces, P, C):

f = Function("f", 1)

i = iteration - 1

if i == 0:

return f(

xor(P[0], nonces[0])

)

return f(

xor(P[i], C[i-1])

)
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MOO Schedules

So far we have assumed that the oracle immediately replies to
the adversary. We support custom schedule types as well.

@MOO_Schedule.register("even")

def even_schedule(iteration: int) -> bool:

return iteration % 2 == 0
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MOO Security Checks

With the MOO Program and Schedule defined we can check
for symbolic security.

moo_result = moo_check(

moo_name = "cipher_block_chaining",

schedule_name = "every",

unif_algo = p_syntactic, # f-rooted local

length_bound = 10

)

Interaction length bounds are included as this problem has
been shown to be undecidable. [Lin et al., 2021]
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MOO Invertibility Check

• It is not a given that any MOO⊕ Program (even secure
ones) are invertible.
• Invertible modes of operations would allow the original

plaintext to be retrieved given the ciphertext and
decryption function f −1.

# CBC is invertible

print(moo_result.invert_result) # True
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MOO Generator

• Builds singly recursive definitions using the xor and f
function, and recursive references to prior cipher blocks.
• Current Limitations:

• A single nonce IV is used.
• The base case is fixed to IV .
• Only single recursion is used.
• Signature is limited to Σ = {⊕/2, 0/0, f /1}

from symcollab.moe import MOOGenerator

gen = MOOGenerator()

next(gen) # f(P[i])
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User Interface

• We support testing symbolic security and invertibility for
both custom modes of operation and procedurally
generated modes of operation.
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Experiments

• Using MOOGenerator, we ran and recorded the results of
many automatically generated modes of operation.

Secure MOOs Found via Automatic Generation and Testing
1 C0 = IV ,Ci = f (f (f (P[i − 1])⊕ r)⊕ C [i − 1])
2 C0 = IV ,Ci = f (f (f (P[i ]))⊕ C [i − 1]⊕ r)
3 C0 = IV ,Ci = f (f (P[i ])⊕ C [i − 1])⊕ C [i − 1]
4 C0 = IV ,Ci = f (f (f (P[i ])⊕ r ⊕ C [i − 1]))
5 C0 = IV ,Ci = f (f (P[i ])⊕ C [i − 1])⊕ f (C [i − 1])

Table: Examples of secure MOOs found using the MOO generator
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Conclusions

We presented a tool for the symbolic analysis of cryptographic
algorithms. It supports:

• Checking symbolic security and invertibility.

• User-defined and automatic generation of modes of
operation.
• Constraints on the generated modes of operation.

• Requiring an initialization vector in the recursive definition.
• Bounding the number of times f is applied.
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Future Work

We plan to expand our tool beyond the current security
properties by using our techniques to analyze:

• Additional Cryptosystems

• Symbolic Authenticity

• Multi-Party Computation (e.g Garbled Circuits)

We also plan to further improve the current work by:

• Improve MOOGenerator and Webpage.

• Expanding the signature to include hash functions.

• Improving the efficiency of security checking by discovering
syntactic heuristics.
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Questions?

Thank you!

Check out our project’s homepage to install and run our tool:
https://symcollab.github.io/CryptoSolve/

26 / 26

https://symcollab.github.io/CryptoSolve/

	Symbolic Security
	Symbolic Techniques
	Synthesize Cryptosystems
	References

